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ABSTRACT
This paper describes the OGI-FONIX large vocabulary system de-
veloped for the 1998 broadcast news evaluation. The main differ-
ences from our last year’s system [1] are: (1) A multiple pass de-
coder is used. (2) Long periods of silence are deleted in both train-
ing and decoding features. Cepstral mean subtraction is applied in-
dividually to automatically derived speaker clusters. These methods
result in a 3% absolute improvement on a self-constructed 1000 sec-
onds test set. (3) Different dictionaries are used for the within word
and crossword decoding passes. Long segments from the first pass
are chopped at hypothesized word boundaries and then merged back
in the crossword decoding pass. These two methods yield 2.3% ab-
solute improvement on the hub4e97 evaluation set. (4) The sys-
tem vocabulary size has been increased from 25K to 56K. With
these changes, our 1998 system achieves a word error rate 27.9%
on the h4e98 1 test set, and 23.6% on the h4e98 2 test set for the
hub4e98 evaluation.

1. Introduction
In recent years, large vocabulary speech recognition systems have
been challenged with increasingly difficult tasks. The current HUB4
DARPA competition involves transcribing audio taken directly from
broadcast news programs. The challenge is to perform accurate
transcription of audio that includes for example, multiple speakers,
background music, and casual dialog.

The OGI LVCSR group first participated in the DARPA evaluation
program in 1997. We developed our 1998 HUB4 system with sup-
port from FONIX corporation. Our 1997 system was substantially
behind the rest of the competition, so our strategy for 1998 was to:

(1) Better understand the pitfalls present in broadcast news audio

(2) Study existing techniques and incorporate them into our system

(3) Develop new ideas to improve system performance.

In the following sections, we first present an overview of the system
and then detail each system component. Some comparative experi-
ments are presented that show how various modifications improved
system performance.

2. System Overview
The OGI-FONIX large vocabulary speech recognition system is a
continuous HMM-based system. It uses 39 MFCC feature param-
eters (12 mfcc parameters plus energy and their first and second
derivatives). It has a 56k-word active vocabulary. The standard
Hub4 acoustic training data for 1996 and 1997 released by LDC
were used. Bigram and trigram language models were trained with

WSJ and BN LM data released last year and this year. The system
has two sets of acoustic models: a within-word triphone model for
the first decoding pass, and a crossword triphone model for the sec-
ond decoding pass. During multiple pass decoding, unsupervised
MLLR was used to adapt the model parameters to each speaker.
Monophone recognition and Bayesian Information Criterion (BIC)
were used to segment/cluster the test data.

2.1. Segmentation and Clustering
Segmentation and clustering were based on the BIC method used by
Chen and Gopalakrishnan from IBM [2]. The general idea behind
the BIC method is to ask wheteher data collected from two hypothe-
sized audio segments is better modeled with a single full-covariance
guassian or two full-covariance gaussians. Because two gaussians
use more parameters to fit the same data, their score is penalized
when compared to the single gaussian fit. The BIC measure is first
used to segment the audio file by placing markers between sections
with sufficiently different 1st and 2nd order statistics. These seg-
ments are then clustered by combining segment pairs with the lowest
mutual BIC score until a stop criterion is met.

For the h4e98 1 test set, 321 segments were detected. Among them,
79 segments were classified as pure music and discarded.

For the h4e98 2 test set, 422 segments were detected. Among them,
37 segments were classified as pure music and discarded.

The average length of the decoding segments was 16.46 seconds
(max 125 seconds).

These segements are subsequently processed by a monophone de-
coder. Silence is detected and treated as a sentence boundary where
long segments may be chopped into shorter ones. The average seg-
ment length after this step was 6.26 seconds (from 1 second to 16
seconds).

For memory and speed considerations, it is desirable not to process
segments longer than 10 seconds with the full decoder. Therefore, a
fast within-word recognizer is applied next so that segments longer
than 10 seconds can be re-cut at likely word boundaries. The result-
ing segments had an average length of 4.8 seconds (from 1 second
to 10 seconds).

2.2. Acoustic Modeling
Standard HUB4 acoustic traning data for 1996 and 1997 were used
to train the acoustic models for the final system.

For the 1996 training data, overlapped segments were discarded. A
force alignment program was used to verify the utterances. Those



bad-conditioned segments were rejected. About 64 hours of data
remained.

Only 31 out of the 72 hours of 1997 training data survived an inten-
sionally restricted (with a narrow pruning-beam) alignment process.
It is suspected that the 1997 transcripts are less accurate than the
1996 transcripts.

During training, the 1996 training data were used to train the acous-
tic models (monophone and context dependent triphone) before state
clustering. Next, a decision tree based state clustering algorithm was
used to produce the context clustering. The triphone models were
refined through several iterations of gaussian splitting and reestima-
tion. 1997 training data were added after each set of models had at
least 8 gaussians per state.

Two sets of triphone model were trained:

(1) a within-word model with 6800 distinct states (16 gaussians per
state)

(2) a crossword model with 7500 distinct states (24 gaussions per
state)

2.3. Language Model and Lexicon
The CMU-Cambridge language model package V2.0 was used. The
text materials included the WSJ LM data and BN LM data obtained
from LDC. The Good-Turing method was used to estimate back-off
trigram and bigram language models. They contained 14M trigrams
and 7M bigrams respectively. The perplexity of the trigram LM on
last year’s evaluation data was 168.

This year we extended our vocabulary from 25k to 56k based on
word frequency in the training corpus. The pronunciations of these
words were extracted from the fonix dictionary. Two dictionaries
were used. They have the same vocabulary but different number of
alternative pronunciations. The smaller dictionary (63k entries) is
used by the within-word decoder, and the big dictionary (66k en-
tries) is used by the crossword decoder.

2.4. Decoding
Last year, because a single pass decoder performed all the recog-
nition tasks, computer memory constraints forced the use of a tight
beam for state pruning. This year a multiple pass decoding strat-
egy was adopted. The general idea follows SRI’s progressive search
technique [3], modified word graph generation, and extension
method [4].

A within-word decoder using a bigram LM is used in the first de-
coding pass to generate a word graph from recorded trace-back in-
formation. Next, the word graph is extended to include crossword
triphones and a trigram LM. Then, a graph decoder performs a sec-
ond decoding pass on the extended word graph to generate the final
transcription output. There are some modifications in our system:

(1) The two passes use different dictionaries. The two dictionaries
have the same vocabulary size but different numbers of alternative
pronunciations. The small dictionary is for the within-word decod-
ing pass, and the big dictionary is for the crossword decoding pass.
The purpose for using an expanded dictionary on the second pass
is to better rescore alternative pronunciations of words hypothesized
by the first decoding pass. See section 3 for detailed explanation.

(2) Word graphs from the same sentence are merged before the sec-
ond decoding pass. Merging two word graphs means making a full
connection between the words at the end of the first word graph
and the words at the beginning of the second word graph. This is
a reverse-process of the last step in segmentation, where long seg-
ments are chopped into shorter ones at the word boundary. Since
the language model is trained on sentence base, but segments pre-
sented to the decoder can be just part of a sentence, this recombina-
tion step makes the decoding environment match more closely with
the language model training environment. See section 3 for detailed
explanation.

2.5. Adpatation

MLLR speaker adaptation is performed on each decoding pass. A
regression tree is created with 8 leaves and 15 regression matri-
ces. Occupation count determines which level of the tree is used
for adaptation. The crossword decoding output serves as the target
for within-word speaker adaptation.

3. Approaches and Experiments
In addition to the described training and decoding strategies, many
attempts were made to improve system performance.

To speed up experimental turn-around time, a 1000-second subset of
the 1996 PE test set data was used. This subset has the same condi-
tion (F0-FX) distribution, the same language model complexity, and
the same OOV rate as the hub4e97 test set. Most of the training
and decoding experiments were based on this subset. The Hub4e97
evaluation set was also used as a development set.

3.1. Silence Deletion and Cluster Based CMS

Cepstral Mean Subtraction (CMS) is a simple but effective front-end
technique that helps normalize speaker and channel variation. Two
factors affect the performance of CMS:

(1) Short segments contain insufficient data to calculate cepstral
means that characterize speaker or channel variation accurately.
Therefore, we attempt to cluster segments from the same source be-
fore calculating cepstral means.

(2) The cepstral mean is influenced by both speaker and channel
variation. The cepstral mean of segments with long silence will re-
flect more channel information than speaker information. Therefore,
silence is removed from segments during both training and decod-
ing to keep the ratio of channel to speech influence relatively stable.
This silence deletion technique was introduced by Yan in his work
on language identification [5]. The steps to perform CMS with si-
lence deletion are as follows:

(a) Silence detection. This is done at the segmentation stage by a
monophone decoder.

(b) If silence is at the beginning of a segment, the segement start-
frame is adjusted to preserve 7 frames of silence at the beginning.

(c) If silence is at the end of a segment, the segment end-frame is
adjusted to preserve 7 frames of silence at the end.

(d) If silence is in the middle of a segment, the segment is shortened
to preserve 8 frames of silence in the middle.



(e) Calculate CMS for all the segments.

Some experiments were run on our 1000-second development set.
Word error rate results are shown in Table 1. Silence deletion yielded
2.8% improvement and cluster based CMS yielded 0.3% improve-
ment. The mixed effect of silence deletion and cluster based CMS
yielded 3% performance improvement on the subset.

1000s subset WER
Baseline 38%

Silence Deletion 35.2%
Clustered CMS 37.7%

Both 35%

Table 1: Silence Deletion and Cluster Based CMS

3.2. Two Dictionaries
As mentioned above, two dictionaries were used in the final decod-
ing system. They have the same vocabulary size (56K) but different
numbers of alternative pronunciations (63K and 66K). The proce-
dure to change the dictionary is illustrated in Figure 1:

for each word graphf

for each word in the word graphf

(1) Remove the alternative pronunciation marker.

(2) Find all the alternative pronunciations in the big
dictionary and insert them by duplicating the corre-
sponding arcs.

g

g

The reasons for incorporating two dictionaries in the system are:

(1) For the within-word decoding pass, computational complexity
restricts the use of a very big dictionary. Also, this pass uses a bi-
gram language model which lacks the accuracy necessary to handle
more alternative pronunciations.

(2) For the crossword decoding pass, each word graph has a limited
vocabulary size, so the computational complexity caused by enlarg-
ing the dictionary and incorporating a trigram language model is
manageable. Including additional alternative pronunciations during
the crossword decoding pass increases acoustic probability scores.

Experiments were done on the HUB4e97 evaluation set. The word
error rate results are shown in Table 2. In the third row of the ta-
ble, without segment merging, the use of two dictionaries had 0.2%
improvement. In the fourth row of the table, with segment merging,
the use of two dictionaries had 0.3% improvement.

3.3. Chop and Merge Segment
In the segmentation stage, long segments are chopped first at the sen-
tence boundary (silence detected by the monophone decoder) and
then at the word boundary (detected by the fast word recognizer).
The resulting segments can be any part of a sentence which intro-

w1(0) w2(0) w3(0)

w1’(0)

w2’(0)

w2’(1)

w3’(0)

w1 w2 w3

Figure 1: Procedure to Change Dictionary
w1, w2, and w3 are recognized words in the small dictio-
nary. w1’, w2’, and w3’ are corresponding words in the
big dictionary. ”(0)” and ”(1)” are alternative pronunci-
ation markers. In the figure it is assumed that word w2
has two alternative pronunciations in the big dictionary,
noted as w2’(0) and w2’(1).

duces a mismatch between the training and decoding environment
since the language model is trained on sentence base. Mistaken sen-
tence boundary tokens likely reduce system performance.

CMU [6] attempted to address this mismatch by ”introducing two
words of context and re-training the language model.” The con-
clusion was that ”the standard technique of modeling the begin-of-
sentence token and assuming the end-of-sentence token provided the
lowest word error rate.”

We addressed the problem in a different way. In our 1998 system,
we merge back segments chopped from the same long utterance to
form complete sentences before the crossword decoding pass. Thus,
the boundary issue caused by segmentation is alleviated without re-
quiring that we modify our language model.

The procedure to merge two segments (word graphs) is illustrated

hub4e97 WER 1 dict only using two dicts
Long segments (<30s) 30.0% -
chop segment (<10s) 29.3% 29.1%

chop and merge segment 28.0% 27.7%

Table 2: Using two dictionaries in recognition



seg2seg1

Figure 2: Procedure to merge two segments
Segments from the same sentence are merged back to
form a complete sentence. The resulting word graph is
recognized by a crossword decoding pass.

in Figure 2. The words at the end of the first word graph and the
words at the beginning of the second word graph are fully connected.
The temporal order of the segments is recorded to ensure correct
merging.

Experiments were done on the HUB4e97 test set. The word error
rate results are shown in Table 2. In the first column of the table,
chopping long segments into shorter ones yielded 0.7% improve-
ment (shorter segments allow the within-word pruning beam to be
relaxed). Merging the small segments back yielded another 1.3%
improvement. The second column shows that the combined effects
of using two dictionaries, chopping, and merging provided a 2.3%
improvement.
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